Aunt Cathy’s Guide to Nutrition:

Nutrition Support of Hemochromatosis Therapy

For people with hemochromatosis, their families, and health care providers:

My Specific “Best Guess” Suggestions (Subject to Change at Any Moment! 😊)

People with hemochromatosis have too much iron stored in the liver and other body organs. Sometimes this is caused by a genetic problem in regulating how much iron is absorbed from foods. In other people, it can be due to a need for frequent blood transfusions. Regardless of the cause, excessive iron causes serious damage that leads to cirrhosis of the liver, liver cancer, heart damage, and other problems. [Hemochromatosis--from an underdiagnosed curiosity to a common disease. Tidsskr Nor Laegeforen. 2009 Apr 30;129(9):863-6. Hereditary haemochromatosis.Best Pract Res Clin Gastroenterol. 2009;23(2):171-83]

The primary treatment to remove excess iron is the removal of red blood cells (erythrocytes) because they contain an iron-rich substance called hemoglobin that carries oxygen to the tissues. The removal of red blood cells is called “phlebotomy,” the same process that is used when donating blood. There are some medications that your doctor may use as well to help remove excessive iron.

In the past, removing iron from the diet was the primary treatment to minimize damage from hemochromatosis, but that approach (besides being quite difficult) does not have the advantage of removing excess iron that has already been deposited in the body. It also results in an inadequate intake of other nutrients that are best found in the same foods that are high in iron. For example, severely limiting dietary iron automatically severely limits dietary zinc, which can then hurt one’s ability to fight infection or heal wounds.
But nutrition still plays an important role in managing hemochromatosis because it can:

- **Support the phlebotomy therapy** by optimizing production of red blood cells to improve the effectiveness of phlebotomy treatments and to allow for more frequent treatments as needed.

- **Decrease the anemia and fatigue** that are common problems related to regular phlebotomy treatments.

- **Decrease some of the damage** to organs from having too much iron.

- **Prevent serious nutritional deficiencies** that can result from regular phlebotomy and/or attempts to decrease dietary iron absorption.

The following suggestions are not the official recommendations of any medical group, but they are simply a collection of things that I would do today if a family member had hemochromatosis. They will likely help and they will do no harm beyond the added cost of the supplements.

Most of the supplements described can be obtained inexpensively in warehouse or discount stores. **These nutrition suggestions are to be used in addition to phlebotomy or other treatments ordered by the physician, and they are not intended to be used instead of phlebotomy.** The specific recommendations may change as more is learned about hemochromatosis.

As always, discuss any diet plan and supplement use with your physician, including any herbal products that you may be taking.

Sometimes the general suggestions given here for helping to manage hemochromatosis need to be modified if a person has other issues that interact with nutrition, such as the use of certain medications, or if one already has serious liver disease. Additionally, some herbal products are particularly risky for people with any condition that injures the liver – some examples of herbs to avoid for this reason are kavakava, chaparrel and comfrey.

1. **Starting point: Take a daily multivitamin/multimineral supplement with no iron.**

Several products are iron-free, such as: "One a Day 55-plus" or “One a Day Men’s," "Certa-Vite with Lutein," and “Centum Silver Men 50+ ” There are many appropriate and inexpensive products, including generic equivalents of these brands. (No particular brand is recommended here.)

Besides "no iron", the minerals that should be included in the product are zinc and copper at the RDA levels, and magnesium at least at about 25% of the RDA. More information on zinc issues is found on pages 6-7.

2. **Extra nutrients specifically to help make hemoglobin and red blood cells:**

 A. **Extra Folic Acid:**

 Some folks should take 2 to 4 tiny folic acid 400 mcg (microgram) tablets. These are cheap, very easy to take and very safe. In the US this supplementation is less essential than it used to be because starting in 1998 well-absorbed folic acid was added to grain products. That means that folic acid inadequacy is much less common now in the US.

 However, in other countries where that fortification is not in place the extra folic acid amount described above is a very good idea for several reasons. Additionally, supplementing that amount even in the US is not a problem … it is just less necessary.

 B. **Extra Vitamin B12 and Vitamin B6:**

 Take one "B-100 Complex" tablet daily – for most people it provides very generous amounts of these nutrients and other important vitamins, and all are well within the safe range. This is true even though RDA levels of these vitamins are also present in the multivitamin. (Note -- extra vitamin B2 -- riboflavin -- will make urine a very bright yellow. No problem.)

 People who are older or who use PPIs (Proton Pump Inhibitor drugs to block stomach acid production) may have problems absorbing vitamin B12 from
food sources like meat. They will usually be able to absorb the vitamin B12 in the supplement form, although they may have poor stores if they have not been regularly taking a supplement. In that case, the more generous supplementation described above is a very good idea. This may include a high dose vitamin B12 oral supplement, or sublingual (under-the-tongue) forms of vitamin B12 or a vitamin B12 shot in order to get B12 levels up and running right away.

However, it is now recognized that many people are at serious risk of vitamin B12 deficiency from other factors that make it hard for vitamin B12 to be absorbed in the intestine. This includes people using metformin (a diabetes drug) and people with stomach or intestinal problems (including partial removal of the stomach or intestinal surgery, and conditions like Inflammatory Bowel Disease / Crohn’s Disease or poorly controlled Celiac Disease.

These people need a much closer look at their vitamin B12 status and they also may need to solve the problem with a sublingual supplement or vitamin B12 shots instead of with oral supplements. [Please see my Vitamin B12 paper for more detail.]

C. Copper

Copper is involved in transporting iron in the body and several other functions. The RDA amount of copper in a “multivitamin with minerals” should be adequate to move iron from the storage areas to the hemoglobin factories. Just check the label to be sure that it DOES contain about 2 mg.

D. Get adequate protein. (More on this later.)

The “globin” part of hemoglobin is made of protein, as are a number of substances (like “transferrin”) needed to move iron from the storage area to the bone marrow where the red blood cells are made.

Protein is also central to the operations of everything in your body, so inadequacy is never a good idea. Most Americans eat a very generous amount of protein, but whenever one tries to follow a diet with a lot of food exclusions, it is a good idea to check the appropriateness of protein in the diet.
E. Get adequate (appropriate) calories.

Without adequate calories, the protein you eat will be burned as fuel to make energy instead of being used to make the important protein substances described above. It’s like living in North Dakota in the winter and running out of fuel . . . we start burning the furniture!

3. **Generous antioxidants can help to decrease tissue damage from having extra iron on board:**

One way that excessive iron causes serious injury is by a process called **oxidation**, the same process that causes metal tools to rust, and cooking oil to turn rancid. To prevent or minimize this kind of damage, the body has a need for substances that act as “**antioxidants**.”

When people have a condition that causes increased oxidation, more antioxidant protection than usual is needed. This is true for hemochromatosis, but also for many other health conditions like diabetes, arthritis and MS. Here are some suggestions for optimizing antioxidant defenses:

A. **Vitamin E:**

Take a 400 iu capsule of this important antioxidant also called “alpha-tocopherol.” The “RDA” is about 30 iu, but the RDA levels are designed to meet the needs of the healthy population. This general recommendation often does not apply when one is dealing with chronic health problems.

The “natural” vitamin E products are usually more expensive than synthetic forms. The natural form of alpha-tocopherol will have the letter “d” in front of the name. However, forms labeled “dl” are synthetic, and they have only about ½ the strength of the d-alpha tocopherol.

It appears, however, that there may also be advantages to using products that contain a natural source of “mixed tocopherols” instead of just d-alpha-tocopherol alone. These include “gamma-tocopherol” and some cousins of vitamin E called “tocotrienols.”

Some references suggest taking 20 mg of gamma-tocopherol, and taking this supplement at a different time of day than the alpha-tocopherol so they do not compete for absorption. Some of the other vitamin E related substances are fairly newly recognized so the research is in early stages.
Vitamin E supplementation at high doses can interact with statin drugs, so as always, check with your doctor if you are taking these medications.

Other minerals like zinc and copper are involved in antioxidant activity as one of many important functions.

B. Selenium:

The mineral selenium has several roles in the body as an antioxidant and in the function of energy metabolism and in the immune system. Inadequacy causes serious health problems. Selenium inadequacy is more common in America than vitamin C or E deficiency, so it will get a closer look here.

There is a large amount of promising research into the role of assuring selenium adequacy in several types of cancer. There is also data that suggests that assuring selenium adequacy may help in the effectiveness of certain chemotherapy medications.

Selenium is part of a critically important antioxidant made in the body called “glutathione peroxidase.” Aim for 100-200 mcg/day. If your multivitamin has about the RDA level of 60 mcg (mcg is the abbreviation for micrograms), take a small 50 mcg tablet in addition. If your supplement has only a little (e.g. some products have none or only about 20 mcg), take two of the 50 mcg tablets. Some products already have as much as 200 micrograms – in that case no additional selenium is needed.

Selenium is potentially toxic in high doses: the recommended upper limit is 600 mcg/day, and the toxic dose is a chronic intake of 800 mcg/day. As you can see, the amount recommended here is not anywhere near the toxic level.

There is evidence that adequacy of selenium and vitamin E may work together to protect against some iron-overload-related heart muscle damage. [e.g. The synergistic effects of vitamin E and selenium in iron-overloaded mouse hearts. Can J Cardiol. 1998 Jul;14(7):937-41.]

Some geographic areas have high amounts of selenium in the soil so people who eat plants or animals grown on that soil may actually be getting too much selenium. [A good way to find out if your area is high in selenium is to ask the local county Agricultural Extension Service staff. Someone there will know whether a region has low selenium because if it is low farmers there have to add selenium to animal feed.]
C. Eat lots of brightly colored fruits and vegetables:

Many of the pigments that give plants their colors are also very potent antioxidants. These substances are sometimes called “phytochemicals” – which just means “plant chemicals.” Examples that are being studied extensively now are lycopene in tomatoes, lutein in dark leafy greens, anthocyanins in blueberries and beets, and many others.

Even seemingly colorless fruits and vegetables (such as onions, garlic and mushrooms) contain important antioxidants. Eating lots of fruits and vegetables has many important health benefits. Interestingly, the iron that is found in leafy greens and may other plants is very poorly absorbed, so enjoy your spinach! (Factors affecting iron absorption will be discussed more later.)

D. Vitamin C issues:

Any acid substance like vinegar or vitamin C can enhance iron absorption from sources of inorganic iron (the form of iron in pills or plants.) That effect is a much less important as a source of iron than the highly absorbable and generous iron found in meat (especially red meat). In spite of this, people with hemochromatosis are often erroneously advised to stop taking all vitamin pills that contain vitamin C, and to avoid fruits and vegetables that contain it.

One person’s story: One man that I saw was so conscientious about following this advice (given to him elsewhere) that he had actually developed scurvy the vitamin C deficiency disease! He was also deficient in many other nutrients because of his efforts to avoid vitamin C. Inadequacy of those nutrients made it impossible for him to make red blood cells. That meant that his phlebotomy treatments to remove extra iron had to be put on hold. His anemia (lack of red blood cells) also made him feel extremely weak and fatigued.

In addition to the absorption of inorganic iron issue, there has been concern that high doses of vitamin C may become a “pro-oxidant” (the opposite of the usual antioxidant role) in situations in which iron stores are excessive or in conditions like alcoholism. This has not been identified as a problem by subsequent research.

Your multivitamin should contain about 100 mg of vitamin C, and it is very likely safe to take an 100 –200 mg of vitamin C in addition in supplement form. Some will also be provided by the fruits and vegetables and you are
strongly encouraged to continue to eat them. If you take extra vitamin C as a supplement, take it with milk or cheese to minimize or negate any increase in absorption of iron from plants or pills (that is, inorganic iron.)

4. **Foods to eat MORE of because they can decrease absorption of (inorganic) iron:**

 A. **Dairy Foods**

 Dairy foods are notoriously poor sources of iron that also decrease absorption of the iron in plants and pills taken at the same time. Drinking milk daily will also help to provide some of the vitamin D you need. A multivitamin provides 400 iu of vitamin D, and there is 100 iu of vitamin D in an 8-oz cup of fortified milk.)

 This is a good amount for some people, although people in the northern latitudes have been shown to need 1000-5000 iu. to assure adequacy because of less ability to make vitamin D from the sun. Just “drinking milk” will not provide adequate vitamin D for many people, even if they drink a gallon of the stuff daily, but milk does havea beneficial effect on decreasing absorption of iron for a person with hemochromatosis.

 The higher risk of vitamin D deficiency is also associated dark skin, old skin, being indoors much of the time, sunscreen use, being covered up, or using seizure-control medications. In other words, it is clear that the current RDA level is insufficient to meet the needs of a large number of people.

 Vitamin D deficiency is now regarded as “an unrecognized epidemic” in the northern half of the USA and certainly in Canada. It is a big contributor to a wide variety of health problems. [See my Top Five Recommendations pape and my Vitamin D paper for more detail on this.]

 Other dairy foods like cheese and yogurt are often NOT supplemented with vitamin D, but they do help reduce iron absorption as milk does.

 If you are not fond of milk you can use these foods and you can easily add extra vitamin D as separate 400-5000 iu capsules to solve the important vitamin D problem.
New information about checking for vitamin D deficiency:

For everyone (and especially those with serious metabolism issues like hemochromatosis) it is a good idea to have a serum vitamin D level measured at least once in the winter every year. This is because the doctor will want to see whether a “maintenance” intake level is enough (1000-2000) or if the individual actually is vitamin D deficient and in need of a “therapeutic” or treatment amount to correct inadequacy before switching to the maintenance amount.

This may be done several ways, but as an example, it may require 50,000 iu/week for 8 weeks. As noted earlier, actual vitamin D deficiency is much more common than previously thought and it is very common in people with liver damage of the type associated with hemochromatosis. And although deficiency is very harmful it is also generally invisible except when we look for it with a blood test. The test is a “25-hydroxycholecalciferol” level. [Vitamin D & parathyroid hormone in outpatients with noncholestatic chronic liver disease. Clin Gastroenterol Hepatol. 2007 Apr;5(4):513-20]

Back to the discussion of dairy foods:

Milk actually decreases absorption of iron, and each cup provides a nice 8 grams of protein. (Remember that ice cream, and most yogurt and cheeses do not have vitamin D added at this time.) Some types of yogurt have vitamin D added and others do not. Other than the ice cream, these foods do provide good protein, so milk, yogurt and cheese are good replacements for meat in meals. [Ice cream has other good qualities … like tasting really good. 😊]

For example, have a cheese sandwich instead of a meat sandwich. An ounce of meat has 7 grams of protein but lots of easily absorbable iron. Cheese has the same amount of protein, and a cup of yogurt or milk has 8 grams of protein, but much less iron, and as noted above, in addition it interferes with iron absorption from other foods. Low fat or skim milk products are usually best for other reasons.

B. Tea

Tea contains “tannins,” plant substances that bind (inorganic) iron in the intestinal tract very well and significantly reduces its absorbability. This has been shown to be effective in hemochromatosis specifically (see the excerpt below.) Tea is looking good for a lot of other reasons as well (e.g.
anti-cancer qualities, antioxidant properties,) in addition to having the marked effect of decreasing absorption of plant iron.

Here is a report called “Clinical trial on the effect of regular tea drinking on iron accumulation in genetic haemochromatosis.” Gut. 1998;43(5): 699-704. “A significant reduction in iron absorption was observed when the test meal was accompanied by drinks of tea instead of water. In the tea drinking group, the increase in storage iron was reduced by about one third compared with that of the control group.

Conclusions: Regular tea drinking with meals reduces the frequency of phlebotomies required in the management of patients with haemochromatosis.”

C. Leafy greens.

Many foods like spinach contain “oxalates” that bind up iron in the intestinal tract and make it too big a molecule to be absorbed well. This is true even though the iron and vitamin C content are generous! These foods also contribute many terrific nutrients as well.

Interestingly, broccoli is low in oxalate, so the iron and other minerals like calcium are pretty well absorbed from this vegetable. So, although broccoli is a leafy and green vegetable, and a very nutritious food, it does not decrease absorption of iron.

D. Bran

Bran is the fibrous outer part of grain. It contains “phytates” which impair iron absorption as tannins and oxalates do.

C. Eggs

Interestingly, although egg yolk used to be fed to infants as an iron source back when I was a baby (1950), the form of iron in eggs has been found to be very poorly absorbed. Eggs are an excellent source of protein (the protein in an egg is like 1 oz of meat) and other nutrients as well such as choline.

Further, the egg white has most of the protein (6 of the 7 grams) and essentially none of the iron at all. So, substituting egg dishes for meats (and
especially using just the egg whites) is another way to decrease the amount of iron available to absorb.

5. Things to eat LESS of (not necessarily to "never" eat):

A. Meats

Meats of all kinds contain iron in an especially absorbable form called “heme” iron. This is also sometimes called “organic iron.” (Think of organic iron as coming from “organisms” – that is, animals and not plants. Absorption of organic iron is not affected by the presence or absence of vitamin C or acid the way plant iron is.

That means that severely restricting vitamin C is not at all effective in reducing absorption of the greatest sources of iron in foods, and as described earlier, it can cause harm.

Iron in the “organic” (animal) form is about 20% absorbed. Twenty percent absorption does not sound very high, but “inorganic iron” (the kind in supplements or plants) is less than 2% absorbed. Some plant forms of iron, in foods like spinach that contain oxalates, are only 0.025% absorbed!

In addition to being a generous source of absorbable iron, meat also has a special property of causing increased absorption of iron from the inorganic iron sources!

In other words, the iron found in chili beans will be much more easily absorbed if there is meat in the chili. This effect is called “Meat Protein Factor.”

Of all the food-related factors that affect iron absorption, limiting meat intake is one of the most influential, but even that appears to be less of an issue if a person is able to undergo phlebotomy regularly. And, as described earlier, maintaining a generous intake of all the OTHER nutrients needed to make red blood cells is key to being able to continue to have the phlebotomy treatments.
B. Liver

Of the different types of meat, liver is extremely high in very absorbable iron, so it would be best to avoid it. This includes foods made from liver like paté, or liverwurst. Scandinavian/German “blood sausage” would also be a poor choice.

C. Red vs white meat

Next to liver, red meat is the highest in absorbable iron, but unless phlebotomy is not working, complete avoidance of red meat does not appear to be necessary.

Poultry and fish have much less iron than red meat, but what they have is still more than in plant foods, and like the iron in red meat, the iron is also well absorbed.

Additionally, the white meat of chicken and turkey has less iron than dark meat. The iron content can be thought of as somewhat “color-coded” in meats. However, all meats have the ability to increase absorption of iron from OTHER foods in the meal as described above (the “Meat Protein Factor”)

D. Alcohol

Alcohol should generally be avoided. Iron overload is a cause of serious liver injury, and alcohol can make the damage worse. Additionally, liver problems make it much harder to process alcohol, so it can stay around longer.

E. Raw seafood

As with people who abuse alcohol, people with hemochromatosis or anyone with potential liver damage from any cause should be especially careful to avoid raw seafood like oysters and sushi. It often contains micro-organisms of the “Vibrio” family that cause cholera and other serious diseases. It is extremely dangerous to anyone with liver problems, even in amounts considered safe for other people. [Note: Oysters are especially high in iron, whether cooked or raw.-]
6. Miscellaneous:

A. Sometime one can decrease iron intake by choosing a similar plant food that contains less iron.

The form of iron in all of the following foods is “inorganic” iron and therefore not highly absorbable, but the total amount in some of these foods make them less desirable products for people with hemochromatosis.

However, this suggestion is way down on the list in terms of importance as long as phlebotomy is working. I mention them here because invariably someone asks about them.

Iron-fortified foods Example: “Quick” iron-fortified cream-of-wheat has over 15 mg iron per cup, but unfortified cream-of-wheat or oatmeal only has about 2 mg. Iron fortified foods will indicate that they are fortified or enriched with iron if you check the label. The words “ferrous” or “ferric” in the ingredient list is an indication of iron being added.

“Enriched” means that the iron was added back to the original level in a food after it was removed during processing. Enriched flour is an example of this.

“Fortified” means that the iron (or another nutrient) was added to achieve a level higher than would naturally be in the food. “Total” cereal is an example of this: it is fortified to provide 18 mg of iron per cup compared with 4.5 mg iron in a cup of a similar but unfortified whole wheat cereal like “Wheaties.”

Legumes like lima beans and peas have 5-6 mg of iron per cup, but vegetables like corn and carrots have only about 1 mg.

Prune juice is not the best choice of juice – it contains quite a lot of iron (over 9 mg per cup compared with about 1 mg per cup of other fruit juices.) It may have other effects as well. 😊
Iron Content of Food in General: The chart on the last page shows the iron content of a number of types of foods and some factors that affect its absorption.

As you can see, the foods that are highest in absorbable iron tend to also be highest in absorbable zinc, and vice versa. This relationship is the reason that the multivitamin with minerals for people with hemochromatosis should provide the RDA level of zinc: if people are cutting back on dietary iron, they will also be accidentally cutting back on zinc intake as well. This is particularly important because inadequate zinc can also impair the production of red blood cells needed for phlebotomy to continue.

B. Acid-blocker drugs

Proton pump inhibitors are medications that suppress acid production in the stomach, and they have been shown to decrease absorption of inorganic iron for that reason. This effect has been employed in the management of hemochromatosis.

As mentioned earlier, people who use this kind of medication must be sure to take vitamin B12 in a supplement form, because absence of stomach acid impairs absorption of vitamin B12 from food sources. The amount described earlier is fine … the issue is that it must be in the crystalline form found in vitamin supplements, and one cannot rely on the vitamin B12 naturally present in animal foods. Inadequate vitamin B12 will limit production of red blood cells, so this is particularly important. [Proton pump inhibitors suppress absorption of dietary non-haem iron in hereditary haemochromatosis. Gut. 2007 Mar 7.]

C. Increased absorption of lead

The same mechanism that results in excessive iron absorption appears to also increase risk of absorption of lead. Lead seriously injures the brain and other organs, and is a great contributor to high blood pressure. It also can contribute to hearing loss. [Examples: Variants in iron metabolism genes predict higher blood lead levels in young children. Environ Health Perspect. 2008 Sep;116(9):1261-6. Low-level environmental exposure to lead and progressive chronic kidney diseases. Am J Med. 2006 Aug;119(8):707.e1-9.]

Sources of lead can include:

- Calcium supplements made from oyster shells, bone or clay (dolomite.) [Lead in pharmaceutical products and dietary supplements. Regul Toxicol Pharmacol.]
Water from wells that have brass or bronze immersible pumps or water that flows through old lead pipes. (For these reasons, a water filter that removes lead would be a very good idea.) Drinking water is not a major contributor to total lead exposure ordinarily but it appears that lead in drinking water is probably absorbed more completely than lead in food. Adults normally absorb 35-50 percent of the lead they drink and the absorption rate for children may be greater than 50 percent.

People with hemochromatosis will absorb even more. [More information about lead in water, pumps and filters can be found at extoxnet.orst.edu/ factsheets/ leadpump.quest]

Old lead-based paint and the dust from it when it disintegrates. Older homes may have been painted with it, and paint chips and dust can be significant sources of lead. Remodeling and demolition work will stir up the lead to increase exposure via the lungs but indirectly through the digestive tract as well. The person with hemochromatosis will absorb much more than others exposed to the same situation.

Some imported pottery, pewter and lead crystal. The lead content of crystal appears to only become a factor when acidic beverages are in contact with the lead in the crystal for quite a while, or if the lead crystal is used on a daily basis. However, many folks use it only about twice a year, so it is not a big problem to toast the New Year using the heirloom crystal. [Estimation of lead intake from crystalware under conditions of consumer use. Food Addit Contam. 2000;17(3):205-18. Lead migration from lead crystal wine glasses. Food Addit Contam. 1996;13(7):747-65.]

Miscellaneous Sources of Lead: Although the issue of increased absorption of lead in hemochromatosis is related only to lead that is consumed, sometimes it is accidentally taken in via other routes. Here are examples to be aware of. Most are not common problems, but they are of interest:

Some Cosmetics: There have been reports recently of lead being found in several brands of lipstick, and many women do end up swallowing quite a lot of lipstick. Another example is kohl, is a lead-based eye make-up common in other countries that finds its way to the US. [www.4woman.gov/faq/cosmetics.pdf. www.safecosmetics.org/http://www.lead-safe.org/elements/uploads/files/file Manager/Cosmetics distributorceaseslead_basedeye_liner.pdf.]
Many folk remedies contain lead: There is an excellent resource on line. [http://www.oregon.gov/DHS/ph/lead/docs/homeremedies.pdf.]

Pica (a craving that results in eating or chewing on non-food items): Pica-associated cerebral edema in an adult. J Neurol Sci. 2004 Oct 15;225(1-2):149-51. Happily, “pencil lead” is not really lead so chewing on pencil lead will not lead to lead absorption from that source. However, based on recently identified problems with lead-based paint on toys and other products imported from China, it might be prudent for pencil-chewers to ask where that pencil came from before proceeding.

Aunt Cathy’s Guide to Nutrition Sanford Medical Center 6-2015

Zinc and Iron in Food
(Food groups in descending zinc-content order)
(from the series “How Am I Supposed to Remember All This Stuff?!”)

Cathy Breedon PhD, RD, CSP, FADA Clinical and Metabolic Nutrition Specialist
Sanford Medical Center, Fargo, ND, and UND School of Medicine Dept. of Pediatrics

<table>
<thead>
<tr>
<th>Food</th>
<th>Amount</th>
<th>Zinc (mg)</th>
<th>Iron (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meats</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oysters (cooked breaded & fried)</td>
<td>3 oz</td>
<td>74.0</td>
<td>24.0</td>
</tr>
<tr>
<td>Liver</td>
<td>3 oz</td>
<td>4.6</td>
<td>6.6</td>
</tr>
<tr>
<td>Beef</td>
<td>3 oz</td>
<td>4.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Crab</td>
<td>½ cup</td>
<td>3.5</td>
<td>0.7</td>
</tr>
<tr>
<td>Lamb</td>
<td>3 oz</td>
<td>3.5</td>
<td>3.1</td>
</tr>
<tr>
<td>Turkey</td>
<td>3 oz</td>
<td>2.5</td>
<td>3.8</td>
</tr>
<tr>
<td>Pork</td>
<td>3 oz</td>
<td>2.4</td>
<td>2.7</td>
</tr>
<tr>
<td>Chicken</td>
<td>3 oz</td>
<td>2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Fish</td>
<td>3 oz</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>Legumes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dried beans (cooked)</td>
<td>½ cup</td>
<td>1.0</td>
<td>2.2-3.0</td>
</tr>
<tr>
<td>Split peas (cooked)</td>
<td>½ cup</td>
<td>1.0</td>
<td>2.2-3.0</td>
</tr>
</tbody>
</table>
Grains

<table>
<thead>
<tr>
<th>Item</th>
<th>Serving Size</th>
<th>Zinc (mg)</th>
<th>Iron (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortified Cereals</td>
<td>1 cup</td>
<td>1.5-4.0</td>
<td>8.0 (4-18)</td>
</tr>
<tr>
<td>Wheat Germ</td>
<td>2 Tbsp</td>
<td>2.4</td>
<td>1.8</td>
</tr>
<tr>
<td>Brown Rice</td>
<td>1 cup</td>
<td>1.2</td>
<td>0.8</td>
</tr>
<tr>
<td>Oatmeal</td>
<td>1 cup</td>
<td>1.2</td>
<td>8 if fortified; 1.7 if not fortified</td>
</tr>
<tr>
<td>Bran Flakes</td>
<td>1 cup</td>
<td>1.0</td>
<td>1.3</td>
</tr>
<tr>
<td>White Rice</td>
<td>1 cup</td>
<td>0.8</td>
<td>1.4</td>
</tr>
<tr>
<td>Bread (whole wheat)</td>
<td>1 slice</td>
<td>0.4</td>
<td>0.8</td>
</tr>
<tr>
<td>Bread (white)</td>
<td>1 slice</td>
<td>0.2</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Nuts and Seeds

<table>
<thead>
<tr>
<th>Item</th>
<th>Serving Size</th>
<th>Zinc (mg)</th>
<th>Iron (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pecans</td>
<td>¼ cup</td>
<td>2.0</td>
<td>0.6</td>
</tr>
<tr>
<td>Cashews</td>
<td>¼ cup</td>
<td>1.8</td>
<td>0.9</td>
</tr>
<tr>
<td>Sunflower Seeds</td>
<td>1 oz</td>
<td>0.5</td>
<td>1.1</td>
</tr>
<tr>
<td>Peanut Butter</td>
<td>2 Tbsp</td>
<td>0.9</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Milk and Dairy Products

<table>
<thead>
<tr>
<th>Item</th>
<th>Serving Size</th>
<th>Zinc (mg)</th>
<th>Iron (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk</td>
<td>1 cup</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Swiss Cheese</td>
<td>1 oz</td>
<td>1.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Cheddar or Mozzarella</td>
<td>1 oz</td>
<td>1.0</td>
<td>0.2</td>
</tr>
<tr>
<td>Yogurt</td>
<td>1 cup</td>
<td>1.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Ice cream</td>
<td>1 cup</td>
<td>1.0</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Fruit

<table>
<thead>
<tr>
<th>Item</th>
<th>Serving Size</th>
<th>Zinc (mg)</th>
<th>Iron (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prune juice</td>
<td>4 oz</td>
<td>0.3</td>
<td>4.3</td>
</tr>
<tr>
<td>Dried apricots</td>
<td>½ cup</td>
<td>0.4</td>
<td>2.5</td>
</tr>
<tr>
<td>Prunes</td>
<td>5 med.</td>
<td>0.2</td>
<td>2.0</td>
</tr>
<tr>
<td>Raisins</td>
<td>¼ cup</td>
<td>0.2</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Vegetables

<table>
<thead>
<tr>
<th>Item</th>
<th>Serving Size</th>
<th>Zinc (mg)</th>
<th>Iron (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spinach, cooked*</td>
<td>½ cup</td>
<td>0.7</td>
<td>2.3</td>
</tr>
<tr>
<td>Peas</td>
<td>½ cup</td>
<td>1.0</td>
<td>1.6</td>
</tr>
<tr>
<td>Asparagus</td>
<td>2 cups</td>
<td>0.4</td>
<td>1.5</td>
</tr>
</tbody>
</table>

* CB Note: As described earlier, several substances present in foods decrease absorption of zinc and iron, especially from the inorganic forms. Phytates in whole grains and bran; Oxalates in certain leafy green vegetables; Tannins in tea; Dairy products. Because of the decreased absorbability the amount shown in the table for these foods likely over-estimates the actual amount of available zinc and iron.*